Immune-endocrine Interactions in Type 2 Diabetes During Latent and Active TB

Katharina Ronacher

Associate Professor
Stellenbosch University Immunology Research Group (SUN-IRG), Division of Molecular Biology and Human Genetics, Faculty of Health Sciences, Stellenbosch University, South Africa.
The link between the immune and endocrine system

- Hormone receptors are expressed on immune cells
- Structural similarity between cytokine and hormone receptors
- Hormones are produced by cells of the immune system

ACTH is produced by lymphocytes and binding of CRH to lymphocytes stimulates ACTH production.
Hormones can affect immune function

Kleynhans et al. PlosOne 2011
Kleynhans et al. Infection and Immunity 2013
How can TB infection/disease affect the endocrine system?

Adapted from Glaser 2005 Nature Reviews Immunology
IFN$_\gamma$ secretion negatively correlates with serum cortisol concentrations in LTBI

$r = -0.4$

$p = 0.02$
Endocrine changes during active TB and TB treatment

Table 1: Characteristics of study groups.

<table>
<thead>
<tr>
<th></th>
<th>Cured (n = 27)</th>
<th>Failed (n = 10)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)*</td>
<td>35.0 ± 10.42</td>
<td>38.6 ± 11.9</td>
<td>0.44</td>
</tr>
<tr>
<td>Sex (F/M)</td>
<td>14/13</td>
<td>5/5</td>
<td></td>
</tr>
<tr>
<td>BMI (kg/m²)*</td>
<td>18.1 ± 0.4</td>
<td>18.8 ± 0.7</td>
<td>0.33</td>
</tr>
<tr>
<td>CXR score*</td>
<td>57.6 ± 6.3</td>
<td>71.7 ± 11.3</td>
<td>0.31</td>
</tr>
</tbody>
</table>

*Results are shown as mean ± SD. F: female, M: male, BMI: body mass index, CXR: chest X-ray
Can chronic inflammation influence the HP axis?

Adapted from Glaser 2005 Nature Reviews Immunology
TB and Diabetes lead to changes in the GC system

- Tuberculosis
 - ↑ cortisol
 - ↑ transient hyperglycaemia
 - ↑ GRβ – GC resistance

- Type 2 diabetes
 - ↑ cortisol HPA (?)
 - ↑ cortisol periphery (11β-HSD1)
 - ↑ GRβ – GC resistance

- Obesity
 - ↑ HPA-axis (GC system)
ALERT Study (NIH-ROI)

Altered Endocrine Axis in Type 2 Diabetes and Risk for Tuberculosis

Chronic Inflammation: ↑ IL-6, IL-1β, TNFα, Leptin

DM2 → ↑ Insulin

Compromised Tc, MN, APC responses to Mtb

Reduced Mtb containment

HPA-axis activation

CRH

Pituitary

Other HP and downstream hormones? (HPT-axis (TSH, T4, T3), AgRP)

ACTH

Adrenal gland

Hypothalamus

Katharina Ronacher
Stellenbosch University

Blanca Restrepo
University of Texas

Gerhard Walzl
Stellenbosch University

Larry Schlesinger
Ohio State University
Gaps and Future Directions

- Interdisciplinary approach to fight the TB-T2DM co-epidemic
 - TB is more than an infectious lung disease
 - T2DM is a complex disorder
- New therapeutic opportunities, host directed therapies
 - DHEA derivatives
Acknowledgements

My team:

Leanie Kleynhans
(Senior Researcher)

Carine Kunsevi-Kilola
(PhD student)

Happy Tshivhula
(PhD student)

Jessica Klazen
(MSc student)

Mosa Selamolela
(MSc student)

Nicole Prins
(Research Assistant)

Ayanda Shabangu
(BSc hons student)

SUN Immunology Research Group

Gerhard Walzl
Clinical and staff and all other SUN-IRG members

Collaborators (TB-DM related studies)

TANDEM
Hazel Dockrell, London School of Hygiene and Tropical Medicine
Reinout van Crevel, Radboud University Medical Center
Julia Critchely, St. George’s University, London

ALERT
Blanca Restrepo, University of Texas
Larry Schlesinger, Ohio State University

Magda Conradie, Stellenbosch University

Funders